Симметрия И Асимметрия В Искусстве И Науке Презентация

Posted on
Симметрия И Асимметрия В Искусстве И Науке Презентация 5,0/5 3113reviews

Презентация 4 класса по предмету "Математика" на тему: "Симметрия в математике и. Презентация: Симметрия в искусстве.pptx, Тема: Симметрия, Урок: Геометрия. Единство науки и искусства – важнейший залог последующего развития. Симметрия и асимметрия - это две формы проявления одной и той же .

Симметрия — Википедия. Равнобедренный треугольник с зеркальной симметрией. Пунктирная линия является осью симметрии.

Рисунок бабочки с двусторонней симметрией. Симме. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой- либо плоскости выглядят одинаково.

Симметрия И Асимметрия В Искусстве И Науке Презентация

Постепенно симметрия стала нам настолько привычна, что мы просто. Мы можем встретить ее в природе, быту, искусстве, науке.

Отсутствие или нарушение симметрии называется асимметрией или аритмией. Треугольник А’В’С может быть получен из треугольника ABC поворотом на 1. Геометрический объект называется симметричным, если после того как он был преобразован геометрически, он сохраняет некоторые исходные свойства. Например, круг повёрнутый вокруг своего центра будет иметь ту же форму и размер, что и исходный круг. Поэтому круг называется симметричным относительно вращения (имеет осевую симметрию).

Виды симметрий, возможных для геометрического объекта, зависят от множества доступных геометрических преобразований и того, какие свойства объекта должны оставаться неизменными после преобразования. Виды геометрических симметрий: Зеркальная симметрия или отражение — движениеевклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью).

Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя. Это математическое понятие в оптике описывает соотношение объектов и их (мнимых) изображений при отражении в плоском зеркале. Проявляется во многих законах природы (в кристаллографии, химии, физике, биологии и т. Собственными вращениями называются разновидности изометрии, сохраняющие ориентацию.

Отсутствие или нарушение симметрии называется асимметрией или аритмией. М., «Наука», 1964.

Таким образом, группа симметрии, отвечающая вращениям, есть подгруппа группы E+(m) (см. Евклидова группа). Трансляционная симметрия может рассматриваться как частный случай вращательной — вращение вокруг бесконечно- удалённой точки. При таком обобщении группа вращательной симметрии совпадает с полной E+(m).

Такого рода симметрия неприменима к конечным объектам, поскольку делает всё пространство однородным, однако она используется в формулировке физических закономерностей. Совокупность собственных вращений вокруг фиксированной точки пространства образуют специальную ортогональную группу SO(m) — группу ортогональных матрицm. Для частного случая m = 3 группа носит специальное название — группа вращений. В физике инвариантность относительно группы вращений называется изотропностью пространства (все направления в пространстве равноправны) и выражается в инвариантности физических законов, в частности, уравнений движения, относительно вращений.

Теорема Нётер связывает эту инвариантность с наличием сохраняющейся величины (интеграла движения) — углового момента. Центра. Центральная симметрия с центром в точке A обычно обозначается через ZA. Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией. Другие названия этого преобразования — симметрия с центром A. Центральная симметрия в планиметрии является частным случаем поворота, точнее, является поворотом на 1.

Скользящая симметрия — изометрияевклидовой плоскости. Скользящей симметрией называют композицию симметрии относительно некоторой прямой l. Скользящую симметрию можно представить в виде композиции 3 осевых симметрий (теорема Шаля). В теоретической физике поведение физической системы описывается некоторыми уравнениями. Если эти уравнения обладают какими- либо симметриями, то часто удаётся упростить их решение путём нахождения сохраняющихся величин (интегралов движения).

Так, уже в классической механике формулируется теорема Нётер, которая каждому типу непрерывной симметрии сопоставляет сохраняющуюся величину. Из неё, например, следует, что инвариантность уравнений движения тела с течением времени приводит к закону сохранения энергии; инвариантность относительно сдвигов в пространстве — к закону сохранения импульса; инвариантность относительно вращений — к закону сохранения момента импульса. Суперсимме. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот. По состоянию на начало 2. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами (за исключением спина). Данное требование не выполняется для известных в природе частиц.

Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет. В таком случае частицы- суперпартнёры обычных частиц оказываются очень тяжёлыми по сравнению с обычными частицами. Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий. Ожидается, что Большой адронный коллайдер. Например, однородная среда совмещается сама с собой при сдвиге на любой вектор, поэтому для неё свойственна трансляционная симметрия. Трансляционная симметрия свойственна также для кристаллов.

В этом случае векторы трансляции не произвольны, хотя их существует бесконечное число. Среди всех векторов трансляций кристаллической решётки можно выбрать 3 линейно независимых таким образом, что любой другой вектор трансляции был бы целочисленно- линейной комбинацией этих трёх векторов. Эти три вектора составляют базис кристаллической решётки. Теория групп показывает, что трансляционная симметрия в кристаллах совместима только с поворотами на углы . Говорят, что кристаллы имеют ось вращения n- го порядка.

В теории поля трансляционная симметрии, согласно теореме Нётер, соответствует сохранению тензора энергии- импульса. В частности, чисто временные трансляции соответствуют закону сохранения энергии, а чисто пространственные сдвиги — закону сохранения импульса. Тип симметрии определяет не только общее строение тела, но и возможность развития систем органов животного. Строение тела многих многоклеточных организмов отражает определённые формы симметрии. Если тело животного можно мысленно разделить на две половины, правую и левую, то такую форму симметрии называют билатеральной. Этот тип симметрии свойственен подавляющему большинству видов, а также человеку. Если тело животного можно мысленно разделить не одной, а несколькими плоскостями симметрии на равные части, то такое животное называют радиально- симметричным.

Этот тип симметрии встречается значительно реже. Асимметрия — отсутствие симметрии. Иногда этот термин используется для описания организмов, лишённых симметрии первично, в противоположность диссимметрии — вторичной утрате симметрии или отдельных её элементов.

Понятия симметрии и асимметрии обратны. Чем более симметричен организм, тем менее он асимметричен и наоборот.

Небольшое количество организмов полностью асимметричны. При этом следует различать изменчивость формы (например у амёбы) от отсутствия симметрии. В природе и, в частности, в живой природе симметрия не абсолютна и всегда содержит некоторую степень асимметрии. Например, симметричные листьярастений при сложении пополам в точности не совпадают. У биологических объектов встречаются следующие типы симметрии: В биологии о радиальной симметрии говорят, когда через трёхмерное существо проходят одна или более осей симметрии. При этом радиальносимметричные животные могут и не иметь плоскостей симметрии. Так, у сифонофоры.

Velella имеется ось симметрии второго порядка и нет плоскостей симметрии. Эти плоскости пересекаются по прямой — оси симметрии. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе (совпадать само с собой). Таких осей симметрии может быть несколько (полиаксонная симметрия) или одна (монаксонная симметрия). Полиаксонная симметрия распространена среди протистов (например, радиолярий). Carcam Hd Car Dvr Прошивка Через Usb здесь.

Как правило, у многоклеточных животных два конца (полюса) единственной оси симметрии неравноценны (например, у медуз на одном полюсе (оральном) находится рот, а на противоположном (аборальном) — верхушка колокола. Такая симметрия (вариант радиальной симметрии) в сравнительной анатомии называется одноосно- гетеропольной. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения. Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих.

Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии. У иглокожих радиальная симметрия вторична: их личинки двустороннесимметричны, а у взрослых животных наружная радиальная симметрия нарушается наличием мадрепоровой пластинки. Кроме типичной радиальной симметрии существует двулучевая радиальная симметрия (две плоскости симметрии, к примеру, у гребневиков). Если плоскость симметрии только одна, то симметрия билатеральная (такую симметрию имеют животные из группы Bilateria). У цветковых растений часто встречаются радиальносимметричные цветки: 3 плоскости симметрии (водокрас лягушачий), 4 плоскости симметрии (лапчатка прямая), 5 плоскостей симметрии (колокольчик), 6 плоскостей симметрии (безвременник). Цветки с радиальной симметрией называются актиноморфные, цветки с билатеральной симметрией — зигоморфные.

Билатера. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A1, во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует.